Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces

نویسندگان

چکیده

Abstract In this paper, we consider a non-linear fourth-order evolution equation of Cahn–Hilliard-type on evolving surfaces with prescribed velocity, where the terms are only assumed to have locally Lipschitz derivatives. High-order surface finite elements used discretise weak system in space, and modified matrix–vector formulation for semi-discrete problem is derived. The anti-symmetric structure preserved by spatial discretisation. A new stability proof, based structure, combined consistency bounds proves optimal-order uniform-in-time error estimates. paper concluded variety numerical experiments.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimates for non-linear parabolic equations

We consider space-time discretizations of non-linear parabolic equations. The temporal discretizations in particular cover the implicit Euler scheme and the mid-point rule. For linear equations they correspond to the well-known A-stable θ-schemes. The spatial discretizations consist of standard conforming finite element spaces that can vary from one time-level to the other. The spatial meshes m...

متن کامل

Pointwise a posteriori error estimates for monotone semi-linear equations

We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then app...

متن کامل

A posteriori error estimates for linear parabolic equations

We consider discretizations of linear parabolic equations by A-stable θ-schemes in time and conforming finite elements in space. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global in space and local in time. The error estimates are fully robust in the sens...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2022

ISSN: ['0945-3245', '0029-599X']

DOI: https://doi.org/10.1007/s00211-022-01280-5